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Summary

The purpose of this memo is to explore more fully the allowable void
specification, in part to make it clearer to those doing the day-to-day evaluation and in
part to help me understand the ramifications.  A simulation of voids in a Be shell is used
to support my understanding of Haan's analysis.  The key results showing allowable
void diameter as a function of void fraction are shown in Figure 6 (p. 8).  What is
important here is that generally in "good" samples we only see small voids, perhaps at
most a few tenths of a µm in size.  For this void size the shells can be underdense by as
much as 10% and still meet the 1 part in 104 spec  (though there may be other issues
with reduced density).

Introduction

The basic specification for uniformity is the nominal 1 part in 104 over length
scales of 100 µm (about mode 60) for all causes of opacity variations.  Ultimately Rich
Stephens' precision radiography will measure shell opacity, but it is valuable to develop
some simpler screening characterization, particularly for voids, at this time to guide
fabrication.  In his JASON's talk1 Steve Haan stated a void spec as 1% void fraction with
volume of individual voids less than 2 µm3, though clearly there is a trade off between
void fraction and size.  Part of the purpose of this memo is to quantify this trade off.

What characterization do we have now?  We can measure the density of a full
thickness Be shell with an uncertainty of (at best) 1%.2  The accuracy is largely
controlled by the measure of wall thickness, and this is affected by both the absolute
thickness and the roughness of the capsule.  At this point all of the measurements made
at LLNL show at least a 2% void fraction (thus with uncertainties this might be as low as
1%), but most of the coatings are much more underdense.  We know in part the reason
for this and have experiments planned to test methods of making more fully dense
coatings.  My point here, however, is that the best we can expect for a density
measurement on full shells is about 1%. The situation with voids is worse.  Some
information (qualitative at best) about grain size and microstructure can be learned

                                                
1 Steve Haan, "Target Design and Implosions," presented to the JASON panel on NIF Ignition, March
25, 2005.
2  Bob Cook, "Density Measurements of Be Shells," LLNL technical memo, February 14, 2005.  A related
memo is Bob Cook, Be Shell Wall Thickness by SEM Analysis," LLNL technical memo, March 1, 2005.
Copies available from Bob Cook.
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from a simple fracture cross-section. Determination of void size and/or distribution
requires that FIB samples be prepared for TEM analysis.  But these samples are only 10
µm squares, and thus unless lots (10's?) are prepared it is at best a guess based on their
analysis what the void size/distribution in the shell is.  This is particularly true for a
nearly fully dense sample where the number/size of voids may be small.  However it is
at present the best we can do, and is useful as a screening tool.

Model and calculations

What I want to do in the remainder of this memo is provide some meat, both in
terms of understanding (at least mine) and useful numbers, to the void specification.
Let me do this in terms of a uniformity criterion.  What I will focus on is the expected
rms of a series of measurements relative to the mean.  Rich Stephens will make a series
of measurements of opacity on a shell using an x-ray spot size of about 100 µm.  It is
reasonable to assume that the voids are randomly scattered, thus the opacity
measurement due to voids alone will be independent about some mean. To measure the
variation in opacity, I'll define  ρM  to be the rms of a series of opacity measurements (as
will be clearer below I am thinking of density measurements) relative to their mean,
expressed in "parts per 104," or
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where  ρi  is an individual opacity measurement and ρ  is their average.  The

dependence of  ρM  on void fraction and void size is given by

  ρM spot size= ⋅ ⋅C v df( ) / /1 2 3 2 (2)

where the void fraction,  v f , is given by

  
v f = −1

0

ρ
ρ

 , (3)

ρ  and  ρ0  being the actual and full densities of the material, and  d  is the diameter of the
void (I'll assume sphericity).  The easiest way (at least for me) to think of the

dependencies in eq 2 is that for a random system the variations go as  N1 2/ , where N  is
the number of the perturbing objects.  Thus if we double the void fraction (at constant
void diameter) we double the number of voids, thus the dependence on ρM  goes as

  v f
1 2/ .  The situation with void size is a little more complicated.  If one simply doubled

the size of all voids, then the measure of the rms would simply double.  However if one
holds the void fraction constant one can only double the volume of the voids by cutting
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their number in half.  Thus, in net, doubling the volume of the voids doubles ρM  but

reducing the number of voids by a factor of two reduces ρM  by a factor of 2 , so the

dependence on  ρM  due to void size goes as the square root of void volume or  d3 2/

where  d  is the more directly measured void diameter.

In order to check this reasoning I modeled the system as follows.  I started with a
shell that has a diameter,  D , of 2000 µm and a wall thickness,  w , of 162 µm, essentially
the 1 MJ Be design dimensions.  Then as input I set the void fraction, 

 
v f , equal to a

specific value (between 0.01 and 0.10) and the void diameter,  d , to a specific value
between 0.1 µm and 10 µm.  From these two values I calculated the number,  n , of voids
that would be in the shell:

  
n

v V

V
f

=
⋅ shell

void
(4)

where

  
V D D wshell = ( ) ( ) − −( )( )4 3 2 23 3/ / /π  (5)

is the volume of the shell and

  V dvoid = ( ) ( )4 3 2 3/ /π (6)

is the volume of a void, which I assume is spherical.  In order to model the
measurement, I pick a "spot size" by selecting an angle ϕspot over which I am going to

simulate an opacity measurement.  For example, 6° represents 1/60 th of the
circumference or about 105 µm.  Thus I will model 60 opacity measurements about the
sphere with "spots" that are 6° on a side (sort of square spots on the surface of the
sphere). The measurement I will model is for one wall only, the actual measurement
(Rich's precision radiography) will by necessity measure two walls simultaneously.  The
measurement value will be determined by how many voids are placed in each
measurement volume when the  n  voids are placed randomly over the sphere.  As a
simple measurement value I compute the density of the sample (each square spot)
assuming full density,  ρ0 , is 1.85 g/cm3, the density of void free Be. I do this by simply
multiplying the number of voids,  ni  placed in a wall section times the volume of a void,

  Vvoid , to determine the amount of "empty" space; then determine what fraction this is
of the volume of the wall section,   Vspot , and multiply times ρ0  to give  ρi , the density

of measurement  i .  Thus in equations
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The individual  ρi  will lie clustered about an average density, ρ , but also very close to
the average shell density given by

  
ρ ρshell = −( ) ⋅1 0v f  . (9)

It's not exactly  ρshell  because we have only taken measurements about the waist of the
capsule, and there are certainly some fluctuations (quite small) when comparing this
band to the total capsule.

Results

In Figure 1 is plotted the dependence of the relative rms, ρM , on void diameter,
d , for 3 values of the void fraction, vf , and for a spot size, ϕspot , of 6 ° (~105 µm

square).  The power dependence on d  is 1 50 01. .± as expected.  Note that for small
voids (<0.5 µm in diameter) the void fraction can be quite large.  More about this later.
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Figure 1. Dependence of  ρM  on void size.
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In Figure 2 is a similar plot of as a function of void fraction, vf , for several values
of void diameter, d . The power dependence on vf  is 0 50. as expected.  Note that even
for a void fraction of 0.01 the size of acceptable voids is no more than 2 µm.
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Figure 2. Dependence of  ρM  on void fraction.

The leading constant in eq 2 that depends upon spot size is all that is left to be
determined.  Actually this constant depends upon the volume of the shell sampled
(  Vspot , eq 7) which for small spots (small  ϕspot ) and constant shell size ( D  and w ) goes

as  ϕspot
2  or the area of the spot, Aspot .  The dependence of ρM  on the area, Aspot , should

go as ( / ) /1 1 2Aspot .  This was checked by doing simulation with different spot sizes.

Plotted in Figure 3 is  ρM  as a function of  ϕspot  for 3 combinations of vf  and d .  The

fitted red lines are  ρ ϕM spotconst= / .

It is now useful perhaps to convert the  ϕspot  into a length, which we will call L ,

where clearly

L
D D

spot spot= ⋅ = ⋅ϕ
π
π

ϕ
2 2

(10)

(For a   ϕspot  radians,  µm for = ° = = =6 0 1047 104 7 2. .L D   mm.)  Thus eq 2 might be

rewritten as

  ρM
const

= ⋅ ⋅
L

v df
1 2 3 2/ / (11)
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Figure 3.  Plot of  ρM  as a function of the spot size showing an inverse
relationship to the linear spot dimension, ϕspot .  The fitted lines are of the

form  ρ ϕM spotconst= / .

Determination of the constant is simply accomplished by "fitting" all the simulation data
(ϕspot 3°, 6°, and 9°= , vf = 0.01 to 0.10 , and d = 0 1 10 0. . to  µm for D = 2000  µm and
w = 162 µm) to eq 11.  Basically

  
const M=

⋅

⋅

ρ L

v df
1 2 3 2/ /

 . (12)

We will evaluate both L  and d  in µm, thus the units of the constant are µm−1 2/ .  In
Figure 4 we show a scatter plot of this constant as a function of the various  L v df, , and 

sets evaluated.  The scatter, of course, is due to the variation in the simulation.  But from
this data a value for the constant of 635 µm−1 2/ can be determined (standard deviation of
55 µm−1 2/ ), thus eq 11 becomes

  
ρM = ⋅

⋅
635

1 2 3 2v d

L
f
/ /

(13)

In Figure 5 we plot the values of d  as a function of vf  that correspond to a ρM

of unity (the 1 part in 104 spec) for L = 50, 100, and 200 µm.  The Haan spec of a void
fraction of 0.01 coupled with a 2.0 µm3 void size ( d = 1 56. µm for a sphere) is
approximately consistent with the red curve.   But what this plot makes clearer is the
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Figure 4.  Scatter plot representation of data used to determine the
proportionality constant in eq 11.
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Figure 5. The values of d  as a function of vf  that correspond to a ρM  of

unity (the 1 part in 104 spec) for L = 50, 100, and 200 µm.

"trade-off" between void fraction and void size.  What is striking is that for a void
diameter of 0.6 µm we can have a void fraction of 0.1 - the sample can be 10%
underdense.  In all but the worst samples the void size is less than 0.5 µm, more
typically 0.2 µm.
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However this view gives the entire opacity non-uniformity margin to voids.
There may be other causes of opacity non-uniformity, and/or this is a place that we
might tighten the specs.  Thus in Figure 6 I plot additionally what the maximum void
size should be for a spec of 1/2, 1/3, 1/4, 1/6, 1/10 of a part in 104, over a 100 µm
length scale.  This is equivalent to taking the Haan spec of v Vf ⋅ ≤void 0 02. µm3 and

reducing it by 22, 32, 42, 62, 102. Though certainly more restrictive, the requirement at
1/10 of a part in 104 is not unreasonable.
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Figure 6. The values of d  as a function of vf  that correspond to a ρM  of 1,
1/2, 1/3, 1/4, 1/6, 1/10 for L = 100 µm.  This is equivalent to a reduction
of the Haan spec ( v Vf ⋅ ≤void 0 02. µm3) by 22, 32, 42, 62, 102.

Some concluding caveats

First this model assumes a random placement of voids.  This is probably not an
unreasonable assumption; it is hard to think of any process that would result in a non-
random placement, at least not angularly with correlation lengths of 100 µm.  There
could, however, be radial variations.  These, however, would also be missed by the
precision radiography measurement as well, and further are not as important to the
implosion physics.  Second, the precision radiography measurement by its nature will
measure both walls at once, thus two wall thicknesses will be averaged.  For this
random void model that corresponds to a "length scale" of twice the spot size. Third, we
have calculated the specification assuming all voids were of equal size.  Clearly this is
not the case.  But if the largest voids we see fall below the size of interest, the remaining
voids that make up the void fraction are even less important.  Fourth, we have
assumed spherical voids.  What is important, for small random voids, is their net
volume rather than their shape.  Thus one must keep this in mind when looking at TEM
pictures of voids, and try to evaluate them in terms of an "effective" spherical diameter.
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Fifth, we have assumed that we either have a void or full density Be.  It is certainly
possible (perhaps likely) that intergrain regions are less than full density, but in a TEM
we don't see a void.  Density variations in this case can only be measured by Stephen's
precision radiographic technique.  Lastly, a word about density.  There are implications
(not good) for working with a lower effective density for Be due to the void fraction.
Our experience at LLNL has been that the best density we have measured has about3 a
v f = .02 , but to date we have not been able to repeat this coating density.  More typical

are v f ≈ .05  (or larger).  Our effort over the next few months will be to develop means
to reduce the void fraction (and probably void size as well).  But it may be unrealistic to
expect that a v f ≤ .01will be achieved, the implications of a design with v f = .05  needs
to be explored.

                                                
3  Measurement of the shell density has an accuracy (at best) of 1-2%.  Thus void fractions are
approximate.




